品牌型号:Dell N5010
系统:Windows 10
软件版本:IBM SPSS Statistics 试用版
主成分分析(Principal Component Analysis,PCA)是一种应用非常广泛的的统计方法。主成分分析通过对原始数据进行数据降维、特征提取,将原始数据转换为一组新的、线性无关的变量(称为主成分),这一组变量反应了数据的主要特征,减少了冗余信息和噪声,为后续分析提高了效率。这里向大家介绍如何使用IBM SPSS Statistics进行主成分分析,SPSS主成分分析法步骤是什么,SPSS主成分分析法的结果怎么解读,本文分两小节向大家作简单介绍。
一、SPSS主成分分析法步骤是什么
主成分分析的核心是通过协方差矩阵对数据的变异性进行建模,然后通过线性变换将数据降维。通过提取主成分,我们能够在保留主要信息的情况下,减少数据的维度,同时也能帮助我们更加深入了解数据的特征。
进行主成分分析的数据一般具备高维的特点,例如图1中数据,使用a到h共8个维度描述某场景,这8个维度中可能存在几个维度,他们组成一个特征矩阵,即可反映这些数据的主要特征,求解特征矩阵的过程就是主成分分析。
图1 待分析数据依次点击【分析】,【降维】,【因子】,进入主成分分析界面。
图2 进行主成分分析将数据加入“变量”列表,点击【描述】,勾选“初始解”,“系数”,“KMO和巴利特球形度检验”三个选项。然后点击【继续】。
图3 指定变量点击【提取】,勾选“未旋转因子解”,“碎石图”两个选项,点击【继续】,点击【确定】,完成主成分分析。
图3 设置提取方法以上就是使用SPSS进行主成分分析的过程,如何解读分析结果,我们在第二小节中向大家介绍。
二、SPSS主成分分析法的结果怎么解读
首先查看总方差解释表格,提取的三个主成分累积为83.169,即三个主成分对变化的解释程度为83.169,提示八个维度可以提取三个主成分。
图4 总方差解释结果查看碎石图,在第四个组件时曲线陡度发生变化,认为取前三个变量作为主成分即可。
图5 碎石图得出的主成分矩阵如图所示,主成分矩阵经计算即可得到特征向量。
图6 成分矩阵表本文向大家介绍了SPSS主成分分析法步骤是什么,SPSS主成分分析法的结果怎么解读。主成分分析通过数学方法降低了数据的维度,降低了分析难度。主成分分析对于非线性数据处理效果可能不佳,另外,主成分分析对异常值非常敏感,进行主成分分析时,应注意剔除异常值。